Effect of WC on Microstructure and Wear Resistance of Fe-Based Coating Fabricated by Laser Cladding

Author:

Wei Angang,Tang Yun,Tong Tong,Wan Fang,Yang Shaoshuai,Wang KaimingORCID

Abstract

As the core component of the wind turbine transmission chain, the wind power gear plays a vital role in the safe and efficient operation of the whole machine. Wind power gears are subjected to varying degrees of wear on their contact surfaces due to alternating load impacts. For wind power gear repair and remanufacturing, laser cladding technology is proposed on the wind power gearbospline shaft. The effect of tungsten carbide (WC) addition on the laser-clad Fe-based coatings was investigated in this study. The morphology and composition of the composite coatings formed with different proportions of WC were studied using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The microhardness and wear resistance were measured with a digital microhardness tester and a wear testing machine, respectively. The coatings were compact with no apparent cracks or pores and the microstructures of the regions above the fusion zone gradually changed from planar crystal to columnar crystal and cellular crystal, while the middle and upper parts of the coating mainly consisted of equiaxed crystals. The microhardness of the coatings gradually increased with the increase of WC content. The coating with 16% WC addition reached a maximum microhardness of 826.2 HV. The increase of WC content improved the wear resistance of the laser-clad Fe-based composite coatings. The wear mechanism of the coatings was mainly abrasive wear, along with slight adhesion wear and oxidative wear.

Funder

China Huaneng Group

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3