Characterisation of laser-cladded 410 stainless steel for in situ repair of turbine blade

Author:

Raj Dhiraj1,Maity Saikat Ranjan2ORCID,Das Bipul1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Silchar, Assam, India

2. Department of Mechanical Engineering, National Institute of Technology Jamshedpur, Jharkhand, India,

Abstract

Laser cladding was employed to apply a pure nickel powder coating onto 410 stainless steel turbine blade material, utilising a 50 W pulsed diode fibre laser system. Various process parameters were explored, including average laser power (20 W, 30 W, 40 W) and scanning speeds (SSs) (0.5 mm/s, 1 mm/s, 1.5 mm/s). The pulse width and frequency were fixed to 110 ns and 50 kHz, respectively. Successful deposition of nickel powder was accomplished at an average power of 40 W at various SSs. The microstructure, phase components, clad geometry, tensile properties, and microhardness of cladded specimens were examined. The experimental results show that the cladding layer has a metallurgical bonding with the substrate, having a visual interface with no cracks or defects. The clad layer's height peaked at 1 mm/s (175.889 μm), while the maximum clad depth occurred at 0.5 mm/s (367.797 μm). Predominant intermetallic phases observed included FeNi3, Cr1.36Fe0.52, along with fine carbides (M3C, M7C3, M23C6 where M – Fe, Ni). Enhanced mechanical properties were observed in the cladded samples compared to the substrate. At 1 mm/s SS, the clad zone exhibited the highest microhardness (221.4 HV), tensile strength (482.03 MPa), and Young's modulus (17.97 GPa).

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3