The Effect of Charged Ag Nanoparticles on Thin Film Growth during DC Magnetron Sputtering

Author:

Jang Gil-Su,Kim Du-Yun,Hwang Nong-Moon

Abstract

The possibility that charged nanoparticles (CNPs) are generated in the gas phase during direct current (DC) magnetron sputtering of Ag is studied. Sputtered Ag particles could be captured on an ultrathin amorphous carbon membrane for transmission electron microscopy (TEM) observation. It is confirmed that the average particle size and the total area of deposition under the condition of the positive bias applied to the substrate are bigger than those under the condition of the negative bias applied to the substrate. The results indicate that some of the sputtered Ag particles are negatively charged. To evaluate the contribution of negatively-charged particles to the film growth, Ag thin films were deposited for 30 min on the Si substrate with the substrate biases of −300, 0 and +300 V and analyzed by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and four-point probe. When +300 V was applied to the substrate, the film growth rate was highest with the film thickness of 85.0 nm, the crystallinity was best with the smallest full width at half maximum (FWHM) value of 0.44 and the resistivity was smallest with 3.67 μΩ·cm. In contrast, when −300 V was applied to the substrate, the film growth rate was lowest with the film thickness of 68.9 nm, the crystallinity was worst with the largest FWHM value of 0.53 and the resistivity was largest with 8.87 μΩ·cm. This result indicates that the charge plays an important role in film growth and can be a new process parameter in sputtering.

Funder

Global Frontier Hybrid Interface Materials

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3