Abstract
Abstract
Effects of sputtering power on the deposition rate and microstructure, crystallinity, and electrical properties of Ag films during direct current (DC) magnetron sputtering are investigated. Thin films (~ 100 nm) are deposited at sputtering powers of 10, 20, 50, 100, 200 and 300 W and analyzed by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and a four-point probe. The film deposited at a sputtering power of 10 W has the lowest growth rate, but the highest crystalline quality, with the lowest full width at half maximum (FWHM) and the lowest resistivity. The film deposited at a sputtering power of 200 W has the highest growth rate, and the second best crystalline quality in view of FWHM and resistivity. The film deposited at a sputtering power of 50 W has the moderate growth rate, and the worst crystalline quality in view of FWHM and resistivity. High-resolution TEM observations reveal that films deposited at sputtering powers of 10 and 200 W have far fewer defects, such as grain boundaries, dislocations and stacking faults than those deposited at a sputtering power of 50 W. Such deposition behavior could be explained by sputtering power, which affected the generation of the charged nanoparticles. And the high quality of films could be obtained at a high deposition rate, in which charge plays an important role.
Graphic Abstract
Funder
National Research Foundation of Korea (NRF) grant funded by the Korea government
Global Frontier Hybrid Interface Materials
BK21PLUS SNU Materials Division for Educating Creative Global Leaders
Publisher
Springer Science and Business Media LLC
Subject
Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献