Abstract
In this work, a terahertz time-domain spectroscopy (THz-TDS) system was used to measure the thickness of thermal barrier coatings (TBCs) and characterize the interface morphology of TBCs after erosion. Reflection mode, with an angle of incidence of 0, was used for inspection before and after erosion. The refractive index, thickness, and internal structure evolution tendency of the yttria-stabilized zirconia (YSZ) top coat were estimated under consideration of the interaction between the pulsed THz waves and the TBCs. The surface roughness of the top coat surface was considered for the errors analysis in the refractive index and thickness measurement. To reduce the errors introduced by the refractive index change after erosion, two mathematical models were built to assess the thickness loss. Then, the thickness loss was compared with results estimated by the micrometer inspection method. Finally, the basic erosion sample profile with Ra roughness was obtained, and the broadening of THz pulses were suggested as a possible measure for the top coat porosity change, showing that THz waves can be a novel online non-destructive and non-contact evaluation method that can be widely utilized to evaluate the integrity of TBCs applied to gas turbine blades.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献