Importance of Dielectric Elements for Attaining Process Uniformity in Capacitively Coupled Plasma Deposition Reactors

Author:

Kim Ho JunORCID

Abstract

In this study, the effect of dielectric elements on plasma radial uniformity was analyzed for a 300 mm wafer process in a capacitively coupled plasma deposition reactor. Based on a two-dimensional self-consistent fluid model, numerical simulations were performed for SiH4/He discharges at 1200 Pa and at the radio frequency of 13.56 MHz. Although in current plasma processes the wafer is often coated with non-conducting films and placed on a ceramic substrate, related materials have not been analyzed. Therefore, the plasma characteristics were studied in depth by changing the wafer material from silicon to quartz, the electrode material from aluminum to aluminum nitride, and the sidewall material from quartz to perfect dielectric. It was demonstrated that dielectric elements with a lower dielectric constant modify the spatial distributions of plasma parameters. In spite of the thinness of the wafer, as the dielectric constant of the wafer decreases, the electric field at the wafer edge becomes weaker owing to the stronger surface-charging effect. This gives rise to the relatively lower density of reactive species such as SiH2+, Si+, He*, and SiH3 near the wafer edge. In addition, radially uniform plasma was induced by the perfect dielectric sidewall, regardless of the dielectric constant of the wafer. This modification occurred because the radial positions of the peak values of the plasma parameters were moved away from the wafer edge. Therefore, the uniform distribution of the plasma density could be largely achieved by the optimal combination of dielectric elements.

Funder

Gachon University

National Research Council of Science and Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference30 articles.

1. Fluid simulation and experimental validation of plasma radial uniformity in 60 MHz capacitively coupled nitrogen discharges

2. Fluid simulation of species concentrations in capacitively coupled N2/Ar plasmas: Effect of gas proportion

3. Principles of Plasma Discharges and Materials Processing;Lieberman,2005

4. Wafer-edge yield engineering in leading-edge DRAM manufacturing;Yavas;Semicond. Fabtech,2009

5. https://sst.semiconductor-digest.com/2016/08/evolution-of-across-wafer-uniformity-control-in-plasma-etch/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3