Abstract
The atmospheric pressure of Ar + H 2 O plasma jet has been analyzed and its effects on the poly(methyl methacrylate) (PMMA) surface has been investigated. The PMMA surface treatment was performed at a fixed gas flow-rate discharge voltage, while varying the plasma treatment time. The Ar + H 2 O plasma was studied with optical emission spectroscopy (OES). Optimum plasma conditions for PMMA surface treatment were determined from relative intensities of Argon, hydroxyl radical (OH), oxygen (O) I emission spectra. The rotational temperature T rot of Ar + H 2 O plasma was determined from OH emission band. The PMMA surfaces before and after plasma treatment were characterized by contact angle and surface free energy measurements, X-ray photoelectrons spectroscopy (XPS), atomic force microscope (AFM) and UV-spectroscopy. The contact angle decreased and surface free energy increased with plasma treatment time. XPS results revealed the oxygen to carbon ratio (O/C) on plasma-treated PMMA surfaces remarkably increased for short treatment time ≤60 s, beyond which it has weakly dependent on treatment time. The carbon C1s peak deconvoluted into four components: C–C, C–C=O, C–O–C and O–C=O bonds and their percentage ratio vary in accordance with plasma treatment time. AFM showed the PMMA surface roughness increases with plasma treatment time. UV-visible measurements revealed that plasma treatment has no considerable effect on the transparency of PMMA samples.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献