Surface Activation of Poly(Methyl Methacrylate) with Atmospheric Pressure Ar + H2O Plasma

Author:

Abdel–Fattah Essam

Abstract

The atmospheric pressure of Ar + H 2 O plasma jet has been analyzed and its effects on the poly(methyl methacrylate) (PMMA) surface has been investigated. The PMMA surface treatment was performed at a fixed gas flow-rate discharge voltage, while varying the plasma treatment time. The Ar + H 2 O plasma was studied with optical emission spectroscopy (OES). Optimum plasma conditions for PMMA surface treatment were determined from relative intensities of Argon, hydroxyl radical (OH), oxygen (O) I emission spectra. The rotational temperature T rot of Ar + H 2 O plasma was determined from OH emission band. The PMMA surfaces before and after plasma treatment were characterized by contact angle and surface free energy measurements, X-ray photoelectrons spectroscopy (XPS), atomic force microscope (AFM) and UV-spectroscopy. The contact angle decreased and surface free energy increased with plasma treatment time. XPS results revealed the oxygen to carbon ratio (O/C) on plasma-treated PMMA surfaces remarkably increased for short treatment time ≤60 s, beyond which it has weakly dependent on treatment time. The carbon C1s peak deconvoluted into four components: C–C, C–C=O, C–O–C and O–C=O bonds and their percentage ratio vary in accordance with plasma treatment time. AFM showed the PMMA surface roughness increases with plasma treatment time. UV-visible measurements revealed that plasma treatment has no considerable effect on the transparency of PMMA samples.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3