Synergistic Effect of Nonthermal Plasma and ZnO Nanoparticles on Organic Dye Degradation

Author:

Abdel-Fattah E.12ORCID,Alotibi S.1ORCID

Affiliation:

1. Department of Physics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Physics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

Abstract

The synergetic effect of nonthermal plasma and ZnO nanoparticles (NPs) on the degradation efficiency of methylene blue was investigated. First, the ZnO nanoparticles were synthesized via the hydrothermal route; the spherical nanoparticles had diameters of 30–50 nm, as observed with a scanning electron microscope (SEM), and had hexagonal ZnO lattice structures, which was confirmed by both X-ray diffraction (XRD) and Raman spectroscopy. The X-ray-photoemission spectroscopy confirmed the ZnO composition and the presence of oxygen vacancies; meanwhile, the optical band gap energy was 3.17 eV. The optical emission of plasma radiation confirmed the presence of various active plasma species. Second, it was found that the maximum degradation efficiency of MB after 60 min was 85% in plasma alone and increased to 95% when combined with 0.2 gL−1 ZnO; but this decreased to 75% when ZnO loading increased to 0.4 gL−1. These results clearly show that combining plasma with the right amount of ZnO is a promising advanced oxidation technique as it provides an additional source of hydroxyl radicals and, at the same time, a source of photons that can excite the ZnO catalyst. The degradation mechanism for plasma alone and the plasma in combination with ZnO was presented.

Funder

Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3