Author:
Tang Ping,Wang Weimin,Li Bing,Feng Lianghuan,Zeng Guanggen
Abstract
Aluminum antimony (AlSb) is a promising photovoltaic material with a band gap of about 1.62 eV. However, AlSb is highly deliquescent and not stable, which has brought great difficulties to the applications. Based on the above situation, there are two purposes for preparing our Zn-doped AlSb (AlSb:Zn) thin films: One is to make P-type AlSb and the other is to find a way to suppress the deliquescence of AlSb. The AlSb:Zn thin films were prepared on glass substrates at different substrate temperatures by using the pulsed laser deposition (PLD) method. The structural, surface morphological, optical, and electrical properties of AlSb:Zn films were investigated. The crystallization of AlSb:Zn thin films was enhanced and the electrical resistivity decreased as the substrate temperature increased. The scanning electron microscopy (SEM) images indicated that the grain sizes became bigger as the substrate temperatures increased. The Raman vibration mode AlSb:Zn films were located at ~107 and ~142 cm−1 and the intensity of Raman peaks was stronger at higher substrate temperatures. In the experiment, a reduced band gap (1.4 eV) of the AlSb:Zn thin film was observed compared to the undoped AlSb films, which were more suitable for thin-film solar cells. Zn doping could reduce the deliquescent speed of AlSb thin films. The fabricated heterojunction device showed the good rectification behavior, which indicated the PN junction formation. The obvious photovoltaic effect has been observed in an FTO/ZnS/AlSb:Zn/Au device.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献