Comparative Evaluation of Coated Carbide and CBN Inserts Performance in Dry Hard-Turning of AISI 4140 Steel Using Taguchi-Based Grey Relation Analysis

Author:

Özdemir Mustafa1,Rafighi Mohammad2ORCID,Al Awadh Mohammed3ORCID

Affiliation:

1. Department of Machine and Metal Technology, Yozgat Bozok University, Yozgat 66200, Türkiye

2. Department of Mechanical Engineering, Başkent University, Ankara 06790, Türkiye

3. Department of Industrial Engineering, King Khalid University, Abha 61411, Saudi Arabia

Abstract

Dry hard-turning is a vital manufacturing method for machining hardened steel due to its low cost, high machining efficiency, and green environmental protection. This study aims to analyze the effect of various machining parameters on cutting forces and surface roughness by employing RSM and ANOVA. In addition, multi-objective optimization (Grey Relation Analysis: GRA) is performed to determine the optimum machining parameters. Dry hard-turning tests were carried out on AISI 4140 steel (50 HRC) using coated carbide and CBN inserts with different nose radii. The results show that the cutting force components are greatly affected by the cutting depth and cutting speed for both cutting inserts. As the level of cutting depth and cutting speed rise, the cutting forces also increase. However, the feed rate was the main factor in surface roughness. A low feed rate and high cutting speed lead to good surface quality. According to the results, CBN inserts exhibited better performance compared to carbide inserts in terms of minimum cutting forces and surface roughness. The lowest radial force (Fx = 55.59 N), tangential force (Fy = 15.09 N), cutting force (Fz = 30.49 N), and best surface quality (Ra = 0.28 µm, Rz = 1.8 µm) were obtained using a CBN tool. Finally, based on the GRA, the (V = 120 m/min, f = 0.04 mm/rev, a = 0.06 mm, r = 0.8 mm) have been chosen as optimum machining parameters to minimize all responses simultaneously in the machining of AISI 4140 steel using both carbide and CBN inserts.

Funder

Deanship of Scientific Research, the King Khalid University of Saudi Arabia

Yozgat Bozok Üniversitesi Bilimsel Araştırmalar Projeleri

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3