Effect of Morphology, Impact Velocity and Angle of the CaO-MgO-Al2O3-SiO2 (CMAS) Particle on the Erosion Behavior of Thermal Barrier Coatings (TBCs): A Finite Element Simulation Study

Author:

Liu Yao,Cao Zhijun,Yuan Jianhui,Sun Xiaowen,Su Huaiyu,Wang Liang

Abstract

The erosion of the unmelted CaO-MgO-Al2O3-SiO2 (CMAS) particle is one of the dominating factors that causes microcracks in thermal barrier coatings (TBCs) when an aeroengine operates under actual service conditions. The microcracks provide a pathway for the erosion of the TBCs by the molten CMAS particles, which accelerates the failure of the coating. Herein a simplified model to mimic the erosion of YSZ (Y2O3 stabilized ZrO2) TBCs by the CMAS particles with high speed is proposed. The finite element method was utilized to systematically investigate the physical damage behaviors of the TBCs by the CMAS particles under various contact configurations, impact velocities and impact angles. We show that the contact configuration has a significant impact on the residual stress of the coating surfaces as well as the formation and types of microcracks. Furthermore, the increment of the erosion velocity gave rise to irreversible deformation around the point of contact, which aggravated the stress conditions of the top layer and led to the delamination failure of the coating. Finally, the larger the erosion angle, the more mechanical energy was converted into internal energy, which accumulated in the YSZ and caused it to finally delaminate.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3