Pulsed Laser Deposition of Aluminum Nitride Films: Correlation between Mechanical, Optical, and Structural Properties

Author:

Kolaklieva Lilyana,Chitanov Vasiliy,Szekeres Anna,Antonova Krassimira,Terziyska Penka,Fogarassy Zsolt,Petrik Peter,Mihailescu Ion,Duta LiviuORCID

Abstract

Aluminum nitride (AlN) films were synthesized onto Si(100) substrates by pulsed laser deposition (PLD) in vacuum or nitrogen, at 0.1, 1, 5, or 10 Pa, and substrate temperatures ranging from RT to 800 °C. The laser parameters were set at: incident laser fluence of 3–10 J/cm2 and laser pulse repetition frequency of 3, 10, or 40 Hz, respectively. The films’ hardness was investigated by depth-sensing nanoindentation. The optical properties were studied by FTIR spectroscopy and UV-near IR ellipsometry. Hardness values within the range of 22–30 GPa and Young’s modulus values of 230–280 GPa have been inferred. These values were determined by the AlN film structure that consisted of nanocrystallite grains, strongly dependent on the deposition parameters. The values of optical constants, superior to amorphous AlN, support the presence of crystallites in the amorphous film matrix. They were visualized by TEM and evidenced by FTIR spectroscopy. The characteristic Reststrahlen band of the h-AlN lattice with component lines arising from IR active phonon vibrational modes in AlN nanocrystallites was well detectable within the spectral range of 950–500 cm−1. Control X-ray diffraction and atomic force microscopy data were introduced and discussed. All measurements delivered congruent results and have clearly shown a correlation between the films’ structure and the mechanical and optical properties dependent on the experimental conditions.

Funder

Bulgarian, Hungarian and Romanian Academies of Sciences

OTKA

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference68 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3