Mathematical Analysis of Entropy Generation in the Flow of Viscoelastic Nanofluid through an Annular Region of Two Asymmetric Annuli Having Flexible Surfaces

Author:

Riaz Arshad,Gul AyeshaORCID,Khan IlyasORCID,Ramesh KattaORCID,Ullah Khan Sami,Baleanu DumitruORCID,Sooppy Nisar KottakkaranORCID

Abstract

In this manuscript, the authors developed the mathematical model for entropy generation analysis during the peristaltic propulsion of Jeffrey nanofluids passing in a midst of two eccentric asymmetric annuli. The model was structured by implementation of lubrication perspective and dimensionless strategy. Entropy generation caused by the irreversible influence of heat and mass transfer of nanofluid and viscous dissipation of the considered liquid was taken into consideration. The governing equations were handled by a powerful analytical technique (HPM). The comparison of total entropy with the partial entropy was also invoked by discussing Bejan number results. The influence of various associated variables on the profiles of velocity, temperature, nanoparticle concentration, entropy generation and Bejan number was formulated by portraying the figures. Mainly from graphical observations, we analyzed that, in the matter of thermophoresis parameter and Brownian motion parameter, entropy generation is thoroughly enhanced while inverse readings were reported for the temperature difference parameter and the ratio of temperature to concentration parameters.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3