Exploring the influence of morphology on magnetized Ree–Eyring tri‐hybrid nanofluid flow between orthogonally moving coaxial disks using artificial neural networks with Levenberg–Marquardt scheme

Author:

Rauf Abdul1ORCID,Khan Hafiza Khadija1,Shah Nehad Ali2

Affiliation:

1. Department of Mathematics Air University Multan Campus Multan Pakistan

2. Department of Mathematics and Statistics, College of Science Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia

Abstract

AbstractThe present study presents an analysis of Ree–Eyring tri‐hybrid nanofluid flow between two expanding/contracting disks with permeable walls by applying the computing power of Levenberg–Marquardt supervised neural networks (LM‐SNNs). The effects of thermal radiation, Brownian motion, and thermophoresis were also thoroughly examined. The results are presented for tri‐hybrid nanofluid with SWCNT and MWCNT and Fe2O3 and H2O base fluid. The coupled non‐linear PDE system is transformed into a system of ODE associated with convective boundary conditions by applying the appropriate transformations. This is then accomplished numerically by using the finite difference‐based BVP‐4c MATLAB code that implements the three‐stage Lobatto IIIA formula. The results are novel and have been validated with LM‐SNNs outcomes. It has been observed that both numerical outcomes and LM‐SNNs produce equivalent results, and both approaches exhibit a drop in the velocity profile for the magnetic field near the lower plate and a rise near the upper plate. The skin friction against the Prandtl number increases, whereas the Nusselt number decreases at the upper disc. Compared to BVP‐4c numerical approaches, the given LM‐SNNs model is more dependable, efficient, and time‐saving because it requires less work and produces results quickly.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3