Numerical Study on the Influence of Shaping Air Holes on Atomization Performance in Pneumatic Atomizers

Author:

Li Wentao,Qian Lijuan,Song Shaobo,Zhong Xiaokai

Abstract

In pneumatic atomizers, the shaping air holes play an important role in the spraying system. The pressure and intersection of shaping air holes are the two most important parameters in engineering. In this paper, the Euler–Lagrangian method is used to describe the two-phase spray flow. The spraying process of the pneumatic nozzle is simulated numerically, and the experiment is designed to verify this simulation. By setting different air pressures and distances between the intersection and the paint hole, target surface pressure and droplet size distribution are investigated in detail, in order to explore the relationship between shaping air holes in pneumatic nozzles and overspray. From the results of the numerical simulation, it is found that an increase in the distance between the intersection and the paint hole increases the gas velocity at the central axis of the nozzle and the central pressure of the target surface, the droplet size becomes larger, and the distribution of droplets is more concentrated on the target surface, which easily leads to overspray. With the increase in the pressure of the shaping air holes, the central pressure of the target surface decreases, and the ovality of the spraying pattern on the target surface increases.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3