A Review of the Developments of the Characteristics and Mechanisms of Airless Spraying on Complex Surfaces

Author:

Wu Zhaojie1,Chen Yan1,Liu Huishu1,Hua Weixing1,Duan Jimiao1,Kong Linglan1

Affiliation:

1. Department of Petroleum, Oil and Lubricants, Army Logistics Academy, Chongqing 401331, China

Abstract

The special surface appearance of complex surfaces restricts the coating film quality of spraying. The study of the atomization and film formation characteristics of typical complex surfaces, as well as the spraying mechanism, is essential for planning the spraying robotic trajectory and improving the spraying efficiency. In this paper, modeling and characteristics of the atomization and film formation process, based on CFD numerical simulations in previous studies, are systematically reviewed, focusing especially on airless spraying. In addition, the advantages and disadvantages of the existing research from the perspective of numerical models and methods are discussed. Finally, a further research direction for spraying on complex surface is prospected. Overall, a comprehensive and up-to-date review of spray atomization and film formation characteristics is considered valuable to practitioners and researchers in these fields, and will facilitate the further application of robotic spraying in the mechanical, automotive, marine, aerospace, petrochemical and other industries.

Funder

National Natural Science Foundation of China

Science and Technology Research Program of Chongqing Municipal Education Commission

Graduate Research Innovation Program of Chongqing, China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3