Impact of the Deposition Temperature on the Structural and Electrical Properties of InN Films Grown on Self-Standing Diamond Substrates by Low-Temperature ECR-MOCVD

Author:

Wang Shuaijie,Qin Fuwen,Bai Yizhen,Zhang Dong,Zhang Jingdan

Abstract

The progress of InN semiconductors is still in its infancy compared to GaN-based devices and materials. Herein, InN thin films were grown on self-standing diamond substrates using low-temperature electron cyclotron resonance plasma-enhanced metal organic chemical vapor deposition (ECR-PEMOCVD) with inert N2 used as a nitrogen source. The thermal conductivity of diamond substrates makes the as-grown InN films especially attractive for various optoelectronic applications. Structural and electrical properties which depend on deposition temperature were systematically investigated by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Hall effect measurement. The results indicated that the quality and properties of InN films were significantly influenced by the deposition temperature, and InN films with highly c-axis preferential orientation and surface morphology were obtained at optimized temperatures of 400 °C. Moreover, their electrical properties with deposition temperature were studied, and their tendency was correlated with the dependence on micro- structure and morphology.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3