Abstract
When there is a choice of materials for an application, particular emphasis should be given to the development of those that are low-cost, nontoxic, and Earth-abundant. Chalcostibite CuSbSe2 has gained attention as a potential absorber material for thin-film solar cells, since it exhibits a high absorption coefficient. In this study, CuSbSe2 thin films were deposited by radio frequency magnetron cosputtering with CuSe2 and Sb targets. A series of CuSbxSe2 thin films were prepared with different Sb contents adjusted by sputtering power, followed by rapid thermal annealing. Impurity phases and surface morphology of Cu–Sb–Se systems were directly affected by the Sb sputtering power, with the formation of volatile components. The crystallinity of the CuSbSe2 thin films was also enhanced in the near-stoichiometric system at an Sb sputtering power of 15 W, and considerable degradation in crystallinity occurred with a slight increase over 19 W. Resistivity, carrier mobility, and carrier concentration of the near-stoichiometric thin film were 14.4 Ω-cm, 3.27 cm2/V∙s, and 1.33 × 1017 cm−3, respectively. The optical band gap and absorption coefficient under the same conditions were 1.7 eV and 1.75 × 105 cm−1, which are acceptable for highly efficient thin-film solar cells.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献