Homogeneity- and Stoichiometry-Induced Electrical and Optical Properties of Cu-Se Thin Films by RF Sputtering Power

Author:

Kim Sara1ORCID,Lee Yong-Seok1,Kim Nam-Hoon1ORCID

Affiliation:

1. Department of Electrical Engineering, Chosun University, Gwangju 61452, Republic of Korea

Abstract

P-type Cu-Se thin films were deposited on glass substrates at room temperature using radio frequency magnetron sputtering by a single multi-component CuSe2 target. When using a multi-component target, the impact of the sputtering power on the homogeneity and stoichiometry within the thin films should be investigated in the depth direction to demonstrate a secondary effect on the electrical and optical properties of the thin films. Systematic characterization of the Cu-Se thin films, including the morphology, microstructure, chemical composition, and depth-directional chemical bonding state and defect structure of the thin films, revealed that the sputtering power played an important role in the homogeneity and stoichiometry of the thin films. At very low and very high sputtering power levels, the Cu-Se thin films exhibited more deviations from stoichiometry, while an optimized sputtering power resulted in more homogenous thin films with improved stoichiometry across the entire thin film thickness in the X-ray photoelectron spectroscopy depth profile, despite showing Se deficiency at all depths. A rapid decrease in carrier concentration, indicating a reduction in the net effect of total defects, was obtained at the optimized sputtering power with less deviation from stoichiometry in the Cu-Se thin films and the closest stoichiometric ratio at an intermediate depth.

Funder

Chosun University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3