The Effect of Magnesium Chloride on the Macroscopic and MI-Croscopic Properties of Phosphate Cement-Based Materials

Author:

Du Yubing,Wang Zhaoyu,Gao Peiwei,Yang Jianming,Zhen Shucong,Wang Hui,Du Tao

Abstract

Phosphate cement-based materials are fast-hardening cement materials, which have been applied to the rapid repair of concrete structures. However, the excessive setting rate could lead to initial cracks in the cement-based matrix. Therefore, a proper retarder is required to reduce the setting rate, thus improving the strength of structures. In this study, a magnesium chloride retarder was selected, and its influence on the setting time, slump flow, and the mechanical strengths (flexural strength, compressive strength, and bond strength) of phosphate cement paste curing for 3 h~28 d was investigated. Scanning electron microscopy, X-ray diffraction, and thermal analysis were used to analyze the mechanism of the properties of phosphate cement paste. Results showed that the setting time increased exponentially with the mass ratio of magnesium chloride by the total mass of magnesium oxide. Meanwhile, the slump flow increased linearly with the increasing dosage of magnesium chloride, and the drying shrinkage rate exhibited a quadratic function with the curing age. The addition of magnesium chloride decreased the mechanical strengths of phosphate cement paste at earlier curing age (lower than 3 d) and effectively improved the mechanical strengths at a later curing age (equal to or higher than 3 d). Moreover, magnesium chloride could also decrease the drying shrinkage rate. It can be obtained from the microcosmic researching results that magnesium chloride can inhibit the hydration of phosphate cement and reduce cracks induced by drying shrinkage at later curing age (higher than 3 d).

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3