The Corrosion Resistance of Reinforced Magnesium Phosphate Cement Reactive Powder Concrete

Author:

Xu Zhiqiang,Cao PengORCID,Wang Di,Wang Hui

Abstract

Magnesium phosphate cement-based reactive powder concrete (MPC-RPC) is a cement-based material with early strength, high strength and excellent durability. The slump flow and setting time of steel fibers reinforced MPC-RPC are investigated. Meanwhile, the flexural strength, the compressive strength, the ultrasonic velocity and the electrical resistivity of specimens cured for 3 h, 1 day, 3 days and 28 days are determined. Moreover, the corresponding corrosion resistance reinforced MPC-RPC exposing to NaCl freeze-thaw (F-T) cycles and dry-wet (D-W) alternations is researched. In this study, the steel fibers used are 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% by the volume of MPC-RPC. The corrosion of the inner reinforcement is reflected using the mass loss, electrical resistivity, ultrasonic velocity, and the AC impedance spectrum. Researching findings show that the steel fibers lead to decreasing the slump flow and setting time. The flexural strength, the compressive strength and ultrasonic velocity of MPC-RPC cured for 3 h are higher than 45% of the MPC-RPC cured for 28 days. Moreover, when the MPC-RPC is cured for 7 days, the flexural strength, the compressive strength and ultrasonic velocity of MPC-RPC are higher than 85% of the specimens cured for 28 days. The electrical resistance decreases in a quadratic function as the volume ratio of steel fibers increases. The corrosion resistance of the internal reinforcement can be improved by adding steel fibers at appropriate dosages. The reinforcement inner MPC-RPC corrodes more seriously under the NaCl D-W alternations than NaCl F-T cycles.

Funder

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3