Thermal Swing Evaluation of Thermal Spray Coatings for Internal Combustion Engines

Author:

Uczak de Goes WellingtonORCID,Markocsan NicolaieORCID,Gupta MohitORCID

Abstract

The efficiency of internal combustion engines is gaining increased interest due to the impact of fuel consumption on greenhouse gas emissions and the goals of countries to minimize emissions. Thermal barrier coatings (TBCs) have shown great potential in improving the efficiency of internal combustion engines. The TBCs, applied on the surface of the piston, apart from thermal isolation, should also follow the surface temperature variations in the combustion chamber, reducing the energy loss and not affecting volumetric efficiency, and thus accomplish a raise in fuel efficiency. This characteristic of the TBC can be associated with the thermal properties, but the best performance test for TBCs is the single cylinder engine test. The single cylinder engine test is an expensive and time demanding procedure, making it not easily accessible. The purpose of this work was to develop a thermal swing test method to evaluate the applicability of TBCs in the combustion chamber of an internal combustion engine. This was carried out by measuring the temperature variation on the surface of the coating (thermal swing response) exposed to heat pulses from a high velocity air fuel (HVAF) spray torch. The TBCs were tested as sprayed (AS) and after grinding them to reduce roughness (RR) in order to ensure similar thickness and roughness along the different TBCs. Characterization of the coating microstructure was carried by scanning electron microscopy (SEM) together with image analysis techniques, and the thermal properties were measured by laser flash analysis (LFA). By correlating the thermal swing response with the microstructure and thermal properties of the coatings, it was determined that the coatings with large open pores exhibited the highest thermal swing response, which was as high as 200 °C.

Funder

The Knowledge Foundation (KK-stiftelsen), Sweden

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference30 articles.

1. Net Zero by 2050: A Roadmap for the Global Energy Sector https://www.iea.org/events/net-zero-by-2050-a-roadmap-for-the-global-energy-system

2. Experimental Evaluation of Novel Thermal Barrier Coatings in a Single Cylinder Light Duty Diesel Engine,2019

3. Suspension Plasma-Sprayed Thermal Barrier Coatings for Light-Duty Diesel Engines

4. Thermal spray processes,2013

5. Mechanisms controlling the durability of thermal barrier coatings

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3