Impact of thermal swing piston top land coatings on gasoline engine performance and raw emissions

Author:

Fischer Marcus1ORCID,Achenbach Jens1,Pischinger Stefan1

Affiliation:

1. Lehrstuhl für Thermodynamik mobiler Energiewandlungssysteme RWTH Aachen, Aachen, Germany

Abstract

Upcoming legislations aim to significantly reduce carbon dioxide and hydrocarbon emissions compared to current regulations. Accordingly, options have to be evaluated to not only convert the raw emissions in a catalytic converter, but also to reduce the raw emissions from the combustion process in the first place. Therefore, thermal piston top land coatings, which lead to an oscillating piston surface temperature were investigated on a single cylinder research engine using a gasoline RON95E10 fuel. Measurements were conducted at a compression ratio of 12.2 and a long Miller intake event. In this manuscript the results achieved with yttria stabilized zirconia in comparison to an uncoated piston are displayed. Significant effects of the coatings on the indicated efficiency could be observed mainly at low engine speeds and loads due to the high share of fuel energy in the wall heat losses and incomplete combustion. At these operating points, the reduction of wall heat losses can almost be fully transferred into indicated efficiency, leading to an increase in indicated efficiency of 6.3% by the yttria stabilized zirconia coating. At higher engine speeds and loads, the advantage in indicated efficiency vanishes and a decrease of 0.5% can be observed. Near full load operation the indicated efficiency slightly lower. However, the effects of a thermal swing coating on combustion efficiency and wall heat losses strongly depend on the operation conditions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3