Semiconducting p-Type Copper Iron Oxide Thin Films Deposited by Hybrid Reactive-HiPIMS + ECWR and Reactive-HiPIMS Magnetron Plasma System

Author:

Hubička ZdenekORCID,Zlámal Martin,Olejníček Jiri,Tvarog Drahoslav,Čada Martin,Krýsa Josef

Abstract

A reactive high-power impulse magnetron sputtering (r-HiPIMS) and a reactive high-power impulse magnetron sputtering combined with electron cyclotron wave resonance plasma source (r-HiPIMS + ECWR) were used for the deposition of p-type CuFexOy thin films on glass with SnO2F conductive layer (FTO). The aim of this work was to deposit CuFexOy films with different atomic ratio of Cu and Fe atoms contained in the films by these two reactive sputtering methods and find deposition conditions that lead to growth of films with maximum amount of delafossite phase CuFeO2. Deposited copper iron oxide films were subjected to photoelectrochemical measurement in cathodic region in order to test the possibility of application of these films as photocathodes in solar hydrogen production. The time stability of the deposited films during photoelectrochemical measurement was evaluated. In the system r-HiPIMS + ECWR, an additional plasma source based on special modification of inductively coupled plasma, which works with an electron cyclotron wave resonance ECWR, was used for further enhancement of plasma density ne and electron temperature Te at the substrate during the reactive sputtering deposition process. A radio frequency (RF) planar probe was used for the determination of time evolution of ion flux density iionflux at the position of the substrate during the discharge pulses. Special modification of this probe to fast sweep the probe system made it possible to determine the time evolution of the tail electron temperature Te at energies around floating potential Vfl and the time evolution of ion concentration ni. This plasma diagnostics was done at particular deposition conditions in pure r-HiPIMS plasma and in r-HiPIMS with additional ECWR plasma. Generally, it was found that the obtained ion flux density iionflux and the tail electron temperature Te were systematically higher in case of r-HiPIMS + ECWR plasma than in pure r-HiPIMS during the active part of discharge pulses. Furthermore, in case of hybrid discharge plasma excitation, r-HiPIMS + ECWR plasma has also constant plasma density all the time between active discharge pulses ni ≈ 7 × 1016 m−3 and electron temperature Te ≈ 4 eV, on the contrary in pure r-HiPIMS ni and Te were negligible during the “OFF” time between active discharge pulses. CuFexOy thin films with different atomic ration of Cu/Fe were deposited at different conditions and various crystal structures were achieved after annealing in air, in argon and in vacuum. Photocurrents in cathodic region for different achieved crystal structures were observed by chopped light linear voltammetry and material stability by chronoamperometry under simulated solar light and X-ray diffraction (XRD). Optimization of depositions conditions results in the desired Cu/Fe ratio in deposited films. Optimized r-HiPIMS and r-HiPIMS + ECWR plasma deposition at 500 °C together with post deposition heat treatment at 650 °C in vacuum is essential for the formation of stable and photoactive CuFeO2 phase.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3