Correlation between Substrate Ion Fluxes and the Properties of Diamond-Like Carbon Films Deposited by Deep Oscillation Magnetron Sputtering in Ar and Ar + Ne Plasmas

Author:

Oliveira JoãoORCID,Ferreira FábioORCID,Serra Ricardo,Kubart TomasORCID,Vitelaru CatalinORCID,Cavaleiro AlbanoORCID

Abstract

Recently, the use of Ne as a processing gas has been shown to increase the ionization degree of carbon in High Power Impulse Magnetron Sputtering (HiPIMS) plasmas. In this work, time-resolved measurements of the substrate’s current density were carried out in order to study the time evolution of the ionic species arriving at the growing film. The addition of Ne to the plasma resulted in a steep increase of the sp3/sp2 ratio in the films once the Ne contents in the processing atmosphere exceeded 26%. Increasing the Ne content is shown to increase both the total number of C ions generated in the plasmas and the ratio of C/gaseous ions. The time-resolved substrate ion current density was used to evaluate the possibility of substrate biasing synchronizing with the discharge pulses in the HiPIMS process. It is shown that in pure Ar plasmas, substrate biasing should be confined to the time interval between 25 and 40 µs after the pulse starts, in order to maximize the C+/Ar+ ratio bombarding the substrate and minimize the formation of film stresses. However, Ne addition to the processing gas shortens the traveling time of the carbon species towards the substrate, reducing the separation between the gaseous and carbon ion arrival times.

Funder

European Commission

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3