Abstract
Zinc Oxide nanostructured thin films were grown by a novel plasma assisted vapour deposition method, which aims to combine the versatility of deposition processes that are mediated by plasma with the capability to control particles diffusion and nucleation. For this purpose, the proposed approach spatially separates into two different vacuum chambers the creation of zinc oxide from a metalorganic precursor from the actual film growth, thanks to the extraction of a supersonic jet of plasma seeded by the precursor fragments. The characterization of the reactor in different plasma conditions has been carried out by means of optical emission spectroscopy (OES). ZnO films with different degrees of purity, thickness uniformity, as well as different morphologies can be obtained varying the deposition parameters. The samples profiles have been collected in order to evaluate deposition rates and films uniformity. The as-prepared as well as annealed thin films were characterized by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to evaluate their chemical composition and purity. According to Raman analyses, the annealed samples are high-purity wurtzite-type crystalline zinc oxide films. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirm a surface morphology characterized by columnar structures.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献