Aluminum Coated Micro Glass Spheres to Increase the Infrared Reflectance

Author:

Schwinger Laura,Lehmann Sebastian,Zielbauer Lukas,Scharfe Benedikt,Gerdes Thorsten

Abstract

The reflective properties of micro glass spheres (MGS) such as Solid Micro Glass Spheres (SMGS, “glass beads”) and Micro Hollow Glass Spheres (MHGS, “glass bubbles”) are utilized in various applications, for example, as retro-reflector for traffic road stripe paints or facade paints. The reflection behavior of the spheres can be further adapted by coating the surfaces of the spheres, e.g., by titanium dioxide or a metallic coating. Such coated spheres can be employed as, e.g., mid infrared (MIR)-reflective additives in wall paints to increase the thermal comfort in rooms. As a result, the demand of heating energy can be reduced. In this paper, the increase of the MIR-reflectance by applying an aluminum coating on MGS is discussed. Aluminum coatings are normally produced via the well-known Physical Vapor Deposition (PVD) or Chemical Vapor Deposition (CVD). In our work, the Liquid Phase Deposition (LPD) method, as a new, non-vacuum method for aluminum coating on spherical spheres, is investigated as an alternative, scalable, and simple coating process. The LPD-coating is characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and reflection measurements. The results are compared to a reference PVD-coating. It is shown that both sphere types, SMGS and MHGS, can be homogeneously coated with metallic aluminum using the LPD method but the surface morphology plays an important role concerning the reflection properties. With the SMGS, a smooth surface morphology and a reflectance increase to a value of 30% can be obtained. Due to a structured surface morphology, a reflection of only 5% could be achieved with the MHGS. However, post-treatments showed that a further increase is possible.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3