Preparation of Melamine Formaldehyde Foam and a Melamine-Formaldehyde-Organo-Clay Nanocomposite and Hybrid Composites

Author:

Gürses Ahmet1ORCID,Şahin Elif2

Affiliation:

1. Department of Chemistry Education, Kazım Karabekir Education Faculty, Atatürk University, 25240 Erzurum, Turkey

2. Nanoscience and Nano Engineering Department, Atatürk University, 25240 Erzurum, Turkey

Abstract

Mineral fillers can be added to thermoset polymers to improve thermal conductivity and deformation behavior, shrinkage, impact strength, dimensional stability and molding cycle time. This study aims to prepare various hybrid composites (MFHCs) using melamine formaldehyde foam (MF), a melamine formaldehyde organo-clay nanocomposite (MFNC) and also pumice as primary filler, and gypsum, kaolinite and a hollow glass sphere as secondary filler. It also focuses on the study of some mechanical properties and thermal conductivities, as well as their microscopic and spectroscopic characterization. For this, firstly, organo-clay was prepared with the solution intercalation method using montmorillonite, a cationic surfactant and long-chain hydrocarbon material, and then was produced using a melamine formaldehyde nanocomposite with in situ synthesis using a melamine formaldehyde pre-polymer and organo-clay. Finally, hybrid composites were prepared by blending various minerals and the produced nanocomposite. For morphological and textural characterization, both FTIR spectroscopy and XRD spectra, as well as SEM and HRTEM images of the raw montmorillonite (MMT), organo-montmorillonite (OMMT), pure polymer (MF) and prepared hybrid composites, were used. Spectroscopic and microscopic analyses have shown that materials with different textural arrangements and properties are obtained depending on effective adhesion interactions between polymer–clay nanocomposite particles and filler grains. Mechanical and thermal conductivity test results showed that melamine-formaldehyde-organo-clay nanocomposite foam (MFCNC) exhibited a very good thermal insulation performance despite its weak mechanical strength (λ: 0.0640 W/m K). On the other hand, among hybrid composites, it has been determined that the hybrid composite containing hollow glass beads (MFCPHHC) is a material with superior properties in terms of thermal insulation and mechanical strength (λ: 0.642 W/m K, bulk density: 0.36 g/cm3, bending strength: 228.41 Mpa, modulus of elasticity: 2.22 Mpa and screw holding resistance: 3.59 N/mm2).

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3