Abstract
Transparent conductive films are fundamental materials, currently used in several fields. Recently, due to their unique multifunctional properties, composite materials have started to be used in place of fluorine tin oxide and indium tin oxide in transparent conductive electrodes. However, the production of composite materials is still complicated and involves toxic chemicals. Through a simple and environmentally-friendly method, we synthesized new composite materials—conductive, transparent, and flexible films—that can be applied to the production of modern optoelectronic devices. An even dispersion of the nanoparticles was achieved by ultrasound excitation. Moreover, a series of morphological and structural investigations were conducted on the films by scanning and transmission electron microscopy, electrical conductivity, Raman spectroscopy, X-ray diffraction and testing their sheet resistance. The results indicated that the tested composite materials were ideal for film coating. The nanofluids containing multi-walled carbon nanotubes presented the highest electrical conductivity; nevertheless, all the composite nanofluids tended to have relatively high electrical conductivities. The flexible films with composite structures presented lower sheet resistances than those with single structures. Finally, the hybrid materials showed a higher transmittance.
Funder
National Research Foundation of Korea
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献