Photovoltaic Characteristics of Multiwalled Carbon Nanotube Counter-Electrode Materials for Dye-Sensitized Solar Cells Produced by Chemical Treatment and Addition of Dispersant

Author:

Kim Sedong,Dovjuu Otgonbayar,Choi Soon-Ho,Jeong HyominORCID,Park Ji-Tae

Abstract

Multiwalled carbon nanotubes (MWCNTs) have excellent electrical conductivity and good chemical stability, and are used as counter electrodes in dye-sensitized solar cells (DSSCs). The counter electrodes collect electrons from the external circuit and catalyze the redox reaction in the electrolyte. Electrocatalysis is an important step for generating energy from triiodide reduction in DSSCs. In this study, chemically treated MWCNTs were investigated for improving the photovoltaic performance of DSSCs. The MWCNTs were modified through chemical oxidation with sulfuric acid/nitric acid (H2SO4/HNO3) or potassium persulfate/sodium hydroxide (K2S2O8/NaOH). Nanocellulose (CNC) was used as a dispersant to improve the photovoltaic performance and dispersibility as an alternative material for counter electrodes in DSSCs. The counter electrodes were prepared on fluorine-doped tin oxide (FTO) glass substrates by spin coating nanofluids. Morphological and structural investigations were performed using scanning transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, and Raman spectroscopy. The electrical conductivity and UV light absorption of the DSSCs were analyzed to evaluate their photovoltaic performance. The results of these analyses showed that chemical functionalization and addition of CNC were effective for increasing the electrical conductivity and UV light absorption. Finally, all result trends were the same. Increasing the dispersibility of the counter electrode was found to improve the reduction of I3− at the interface between the MWCNTs and the electrolyte, thereby, improving the energy conversion efficiency.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3