Methods to Generate Structurally Hierarchical Architectures in Nanoporous Coinage Metals

Author:

Sondhi Palak,Stine Keith J.ORCID

Abstract

The fundamental essence of material design towards creating functional materials lies in bringing together the competing aspects of a large specific surface area and rapid transport pathways. The generation of structural hierarchy on distinct and well-defined length scales has successfully solved many problems in porous materials. Important applications of these hierarchical materials in the fields of catalysis and electrochemistry are briefly discussed. This review summarizes the recent advances in the strategies to create a hierarchical bicontinuous morphology in porous metals, focusing mainly on the hierarchical architectures in nanoporous gold. Starting from the traditional dealloying method and subsequently moving to other non-traditional top-down and bottom-up manufacturing processes including templating, 3D printing, and electrodeposition, this review will thoroughly examine the chemistry of creating hierarchical nanoporous gold and other coinage metals. Finally, we conclude with a discussion about the future opportunities for the advancement in the methodologies to create bimodal structures with enhanced sensitivity.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference69 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3