Effects of Pd Alloying and Coating on the Galvanic Corrosion between Cu Wire and Bond Pads for a Semiconductor Packaging

Author:

Yoo Young-Ran1ORCID,Kim Young-Sik12ORCID

Affiliation:

1. Materials Research Centre for Energy and Clean Technology, Andong National University, 1375 Gyeongdong-ro, Andong 36729, Republic of Korea

2. School of Materials Science and Engineering, Andong National University, 1375 Gyeongdong-ro, Andong 36729, Republic of Korea

Abstract

Semiconductor chips are packaged in a process that involves creating a path to allow for signals to be exchanged with the outside world and ultimately achieving a form to protect against various external environmental conditions such as heat and moisture. The wire bonding type of packaging is a method in which thin metal wires are bonded to pads to create an electrical connection between the chip and the lead frame. An Epoxy Molding Compound (EMC) can be applied to protect semiconductor chips from external environmental conditions such as heat, shock, and moisture. However, EMC contains halogen elements and sulfides and has hydrophilic properties, which can lead to a corrosive environment. The present study aims to evaluate the influence of chloride, which is a contaminant formed during the PCB manufacturing process. To this end, the galvanic corrosion of bonding wire materials Cu wire, Cu wire alloyed with 1% Pd, and Cu wire coated with Pd was investigated. The first ball bond was bonded to the Al pad and the second stitch bond was bonded to the Au pad of the manufacturing process, after which the galvanic corrosion behavior in the semiconductor packaging module specimen was analyzed. A model of galvanic corrosion behavior was also proposed.

Funder

Andong National University

the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3