Application of Adaptive Materials and Coatings to Increase Cutting Tool Performance: Efficiency in the Case of Composite Powder High Speed Steel

Author:

Grigoriev Sergey N.ORCID,Migranov Mars S.,Melnik Yury A.ORCID,Okunkova Anna A.ORCID,Fedorov Sergey V.ORCID,Gurin Vladimir D.,Volosova Marina A.

Abstract

The paper proposes a classification of adaptive materials and coatings for tool purposes, showing the ability to adapt to external heat and power influences, thereby improving tool life. Creating a cutting tool made of composite powder high speed steels containing refractory TiC, TiCN, and Al2O3 compounds for milling 41CrS4 steel demonstrated the effectiveness of the adaptive materials. The tool material characteristics under the external loads’ influence and the surface layer adaptation to the heat–power exposure conditions were shown by the temperature field study using a semiartificial microthermocouple method (the level of fields is reduced by 20%–25% for 80% HSS + 20% TiCN), frictional interaction high-temperature tribometry (the coefficient of friction did not exceed 0.45 for 80% HSS + 20% TiCN at +20 and 600 °C), laboratory performance tests, and spectrometry of the surface layer secondary structures. Spectral analysis shows the highest spectrum intensity of TiC2 after 5 min of running in. After 20 min of milling (V = 82 m/min, f = 0.15 mm/tooth), dicarbide decomposes and transits to thermally stable secondary phase films of good lubricity such as TiO (maximum) and TiN (partially). There was an increase in tool life of up to 2 times (>35 min for 80% HSS + 20% TiCN), and a decrease in the roughness of up to 2.9 times (Ra less than 4.5 µm after 25 min of milling).

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3