The Effect of Annotation Quality on Wear Semantic Segmentation by CNN

Author:

Bilal Mühenad1ORCID,Podishetti Ranadheer1,Koval Leonid1ORCID,Gaafar Mahmoud A.23,Grossmann Daniel1,Bregulla Markus1

Affiliation:

1. Digital Production, AImotion Bavaria, Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany

2. Department of Physics, Faculty of Science, Menoufia University, Menoufia 32511, Egypt

3. Institute of Optical and Electronic Materials, Hamburg University of Technology, 21073 Hamburg, Germany

Abstract

In this work, we investigate the impact of annotation quality and domain expertise on the performance of Convolutional Neural Networks (CNNs) for semantic segmentation of wear on titanium nitride (TiN) and titanium carbonitride (TiCN) coated end mills. Using an innovative measurement system and customized CNN architecture, we found that domain expertise significantly affects model performance. Annotator 1 achieved maximum mIoU scores of 0.8153 for abnormal wear and 0.7120 for normal wear on TiN datasets, whereas Annotator 3 with the lowest expertise achieved significantly lower scores. Sensitivity to annotation inconsistencies and model hyperparameters were examined, revealing that models for TiCN datasets showed a higher coefficient of variation (CV) of 16.32% compared to 8.6% for TiN due to the subtle wear characteristics, highlighting the need for optimized annotation policies and high-quality images to improve wear segmentation.

Funder

Research and Development (R&D) program “FuE Programm Informations- und Kommunikationstechnik Bayern” of the Free State of Bavaria

Publisher

MDPI AG

Reference40 articles.

1. Designing clinically translatable artificial intelligence systems for high-dimensional medical imaging;Shad;Nat. Mach. Intell.,2021

2. Machine learning for COVID-19 needs global collaboration and data-sharing;Nat. Mach. Intell.,2020

3. The challenges of deploying artificial intelligence models in a rapidly evolving pandemic;Hu;Nat. Mach. Intell.,2020

4. Preparing medical imaging data for machine learning;Willemink;Radiology,2020

5. Northcutt, C.G., Athalye, A., and Mueller, J. (2021). Pervasive label errors in test sets destabilize machine learning benchmarks. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3