Carrier Modulation in Bi2Te3-Based Alloys via Interfacial Doping with Atomic Layer Deposition

Author:

Lim Sang-Soon,Kim Kwang-Chon,Lee Seunghyeok,Park Hyung-HoORCID,Baek Seung-Hyub,Kim Jin-Sang,Kim Seong KeunORCID

Abstract

The carrier concentration in Bi2Te3-based alloys is a decisive factor in determining their thermoelectric performance. Herein, we propose a novel approach to modulate the carrier concentration via the encapsulation of the alloy precursor powders. Atomic layer deposition (ALD) of ZnO and SnO2 was performed over the Bi2Te2.7Se0.3 powders. After spark plasma sintering at 500 °C for 20 min, the carrier concentration in the ZnO-coated samples decreased, while the carrier concentration in the SnO2-coated samples increased. This trend was more pronounced as the number of ALD cycles increased. This was attributed to the intermixing of the metal ions at the interface. Zn2+ substituted for Bi3+ at the interface acted as an acceptor, while Sn4+ substituted for Bi3+ acted as a donor. This indicates that the carrier concentration can be adjusted depending on the materials deposited with ALD. The use of fine powders changes the carrier concentration more strongly, because the quantity of material deposited increases with the effective surface area. Therefore, the proposed approach would provide opportunities to precisely optimize the carrier concentration for high thermoelectric performance.

Funder

National Research Council of Science and Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3