Author:
Goswami Ramasis,Qadri Syed,Nepal Neeraj,Eddy Charles
Abstract
We demonstrate the growth of ultra-thin AlN films on Si (111) and on a GaN/sapphire (0001) substrate using atomic layer epitaxy in the temperature range of 360 to 420 °C. Transmission electron microscopy and X-ray diffraction were used to characterize the interfaces, fine scale microstructure, and the crystalline quality of thin films. Films were deposited epitaxily on Si (111) with a hexagonal structure, while on the GaN/sapphire (0001) substrate, the AlN film is epitaxial and has been deposited in a metastable zinc-blende cubic phase. Transmission electron microscopy reveals that the interface is not sharp, containing an intermixing layer with cubic AlN. We show that the substrate, particularly the strain, plays a major role in dictating the crystal structure of AlN. The strain, estimated in the observed orientation relation, is significantly lower for cubic AlN on hexagonal GaN as compared to the hexagonal AlN on hexagonal GaN. On the Si (111) substrate, on the other hand, the strain in the observed orientation relation is 0.8% for hexagonal AlN, which is substantially lower than the strain estimated for the cubic AlN on Si(111).
Funder
U.S. Naval Research Laboratory
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献