Synthesis of Polycrystalline Diamond Films in Microwave Plasma at Ultrahigh Concentrations of Methane

Author:

Martyanov Artem1ORCID,Tiazhelov Ivan1,Savin Sergey2,Voronov Valery1ORCID,Konov Vitaly1,Sedov Vadim1ORCID

Affiliation:

1. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., Moscow 119991, Russia

2. Nanocenter MIREA, MIREA—Russian Technological University, 78 Vernadsky Ave., Moscow 119454, Russia

Abstract

Polycrystalline diamond (PCD) films are usually grown by chemical vapor deposition (CVD) in hydrogen–methane mixtures. The synthesis conditions determine the structure and quality of the grown material. Here, we report the complex effect of the microwave plasma CVD conditions on the morphology, growth rate and phase composition of the resulting PCD films. Specifically, we focus on the factors of (i) increased methane concentrations (νc) that are varied over a wide range of 4%–100% (i.e., pure methane gas) and (ii) substrate temperatures (Ts) varied between 700–1050 °C. Using scanning electron microscopy, X-ray diffraction and Raman spectroscopy, we show that diamond growth is possible even at ultrahigh methane concentrations, including νc = 100%, which requires relatively low synthesis temperatures of Ts < 800 °C. In general, lower substrate temperatures tend to facilitate the formation of higher-quality PCD films; however, this comes at the cost of lower growth rates. The growth rate of PCD coatings has a non-linear trend: for samples grown at Ts = 800 °C, the growth rate increases from 0.6 µm/h at νc = 4% to 3.4 µm/h at νc = 20% and then falls to 0.6 µm/h at νc = 100%. This research is a step toward control over the nature of the CVD-grown PCD material, which is essential for the precise and flexible production of diamond for various applications.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3