Composite Ferroelectric Coatings Based on a Heat-Resistant Polybenzoxazole Polymer Matrix

Author:

Mukhin NikolayORCID,Sokolova IrinaORCID,Chigirev Dmitry,Rudaja Lyudmila,Lebedeva Galina,Kastro Rene,Bol’shakov Maxim,Schmidt Marc-Peter,Hirsch Soeren

Abstract

The polycondensation of 5,5-methylene bis(2-aminophenol) and the mixture of diamines 5,5-methylene bis(2-aminophenol) and 4,4-(hexafluoroisopropylidene)dianiline (molar ratio 0.8:0.2) with isophthaloyl dichloride was used to synthesize a new heat resistant binder of the composites for microelectronics: poly(o-hydroxyamide) (POA) and poly(amido-o-hydroxy amide) (POA-F). The thermal stability of synthesized polymer coatings, as well as based on them photosensitive compositions with a naphthoquinondiazide photosensitive component were studied in the temperature range from 100 to 500 °C. Ferroelectric composites with nanodispersed lead titanate zirconate powder filler were formed based on these polymer matrices. By manipulating the conditions of the polymer formation, we obtained matrices with different stiffnesses, which reflected on the properties of the composite. The electrophysical parameters of the synthesized polymer and ferroelectric composite coatings were measured in the frequency range from 0.1 Hz to 1.5 GHz and the temperature range from 0 to 300 °C. The frequency and temperature stability of the dielectric constant of ferroelectric composite coatings up to 10 MHz and 300 °C, respectively, are noted. The influence of the composition and structure of the polymer matrix and the grain/matrix interfaces on the thermal stability of the dielectric parameters of composite films is estimated. The shift of the phase transition region toward higher temperatures in the composite structure, as well as the sufficient rigidity of the poly(benzoxazole) matrix, provide high temperature and frequency stability of the dielectric constant of the studied composites.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3