Directly-Patternable Bi2O3 Nanoparticle for Polymer Nanocomposite Capacitor

Author:

Son Ki-HoonORCID,Lee Hong-Sub

Abstract

A polyvinylidene fluoride (PVDF) film incorporating size-controlled, uniformly dispersed, directly patterned Bi2O3 nanoparticles was developed to achieve a high-k polymer nanocomposite capacitor. The photochemical metal-organic deposition (PMOD) method was employed to form uniformly dispersed and directly patterned nanoparticles on the substrate. Bi nanoparticles were produced by spin coating a Bismuth 2-ethylhexanoate solution on a Pt substrate with UV irradiation for 1, 4, 7, and 10 min. The average diameter of nanoparticles and the number of nanoparticles per unit area (μm2) were about 30, 70, and 120 nm and 30, 30, and 31 particles/μm2 for UV irradiation times of 4, 7, and 10 min, respectively. In addition, the capacitance of PVDF nanocomposite film could be controlled by the Bi2O3 nanoparticle size. The PVDF nanocomposite film containing Bi2O3 nanoparticles with 1, 4, 7, and 10 min UV irradiation were able to improve capacitance by about 1.4, 2.0, 2.7, and 3.4 times compared with an as-prepared PVDF film. By using a mask aligner, directly pattered Bi nanoparticles on the substrate, which had a 5 μm line width pattern, were successfully defined and demonstrated.

Funder

National Research Foundation of Korea

Kangwon National University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3