Interaction of Si Atom with the (001) Surface of TiN, AlN and TaN Compounds

Author:

Svyatkin Leonid1ORCID,Ognev Sergey12,Syrtanov Maxim1,Koroteev Yury2

Affiliation:

1. Division for Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia

2. Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences, 634055 Tomsk, Russia

Abstract

Nowadays, the application of multicomponent coatings with multiphase nanocrystalline structure is the most promising direction in the search for wear-resistant protective coatings with a full set of necessary operational properties. Nanocrystalline multicomponent coatings based on the Ti-Al-Ta-Si-N system have a high hardness combined with thermal stability and oxidation resistance. Silicon atoms are weakly soluble in the TiN, Ti1−xAlxN, and TaN crystalline phases of the Ti-Al-Ta-Si-N system and interact preferentially with N atoms, forming the amorphous Si3N4 phase. In this context, it is important to first study the peculiarities of the interaction of Si atoms with the simplest structural units of the Ti-Al-Ta-Si-N system, such as TiN, AlN, and TaN compounds with the NaCl structure. This work is devoted to the study of the interaction of a Si atom with the (001) surface of AlN, TiN, and TaN compounds with the NaCl structure using ab initio calculations. This provides information for a deep understanding of the initial stages of the formation of different crystallites of the considered composite. It was established that the adsorption of silicon on the (001) surface of AlN, TiN, and TaN significantly increases the relaxation of the surface layers and leads to an increase in the corrugation observed on the clean surfaces. The largest corrugation is observed on the surface of the TaN compound. The most energetically favorable adsorption positions of Si atoms were found to be the position of Si above the N atom on the TiN and TaN surfaces and the quadruple coordinated position on the AlN surface. The valence electron density distribution and the crystal orbital Hamiltonian population were studied to identify the type of Si atom bonding with the (001) surface of AlN, TiN, and TaN compounds. It was found that silicon forms predominantly covalent bonds with the nearest metal and nitrogen atoms, except for the quadruple coordinated position on the surface of TiN and TaN, where there is a high degree of ionic bonding of silicon with surface atoms.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3