Simulation Analysis on Flow Field of Paint Mist Recovery with Single Nozzle for Ship Outer Panel Spraying Robot

Author:

Yi Zhengyao,Mi Siyao,Tong TianqiORCID,Li Kai,Feng Bingxing

Abstract

In this paper, we design a kind of negative pressure vacuum recovery hood, arranged at the front of the spray gun nozzle by CFD simulation; this addresses the paint mist pollution problem of the robot spraying on the outer plate of the ship, and the nozzle is arranged at the center of the recovery hood. Three vacuum recovery hood schemes are designed as follows: Scheme A, a hemispherical recovery hood with a diameter of 1.2 m; Scheme B, with a diameter of 1.6 m; Scheme C, with a diameter of 2.0 m. The recovery vacuum suction holes of the three recovery hoods are arranged differently. Firstly, a mathematical model of the spraying jet for the case of 0.48 mm diameter nozzle was established, and the established nozzle jet flow field model was verified to be feasible through case simulation analysis and experimental comparison. Secondly, a detailed discussion and analysis of the simulation process was conducted focusing on Scheme A. During the simulation of Scheme A, it was found that: the air velocity at the inlet surface and the kinetic energy of the paint mist had a large impact on the simulation effect, so it is necessary to try to further improve the structure of the recovery hood. Finally, the further simulation analysis of Scheme B and Scheme C shows that Scheme C > Scheme B > Scheme A in terms of the paint mist recovery effect. It can be seen that the use of Scheme C as a shipyard robotic spray paint mist recovery shows better results, which provides a theoretical scheme for shipyards to achieve paint mist anti-fouling as soon as possible.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference18 articles.

1. ENHANCING PERFORMANCE CHARACTERISTICS OF EQUIPMENT OF SEA AND RIVER TRANSPORT BY USING EPOXY COMPOSITES

2. Large Spraying Robots for Ship Shell Plate in Dock;Lin;Robot,2018

3. Analysis on Clean Production in Environmental Impact Assessement of Shipping Business;Hao;Ship Eng.,2013

4. Microstructure and Wear Property of ZrO2-Added NiCrAlY Prepared by Ultrasonic-Assisted Direct Laser Deposition

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3