Preparation of Highly Transparent (at 450–800 nm) SnO2 Homojunction by Solution Method and Its Photoresponse

Author:

Ye Qiannan,Zhang Xu,Guo Dong,Xu Wei,Ning HonglongORCID,Qiu Tian,Li Jinxiong,Hou Danqing,Yao RihuiORCID,Peng Junbiao

Abstract

High-quality SnO2:Si films and SnO2:10 at.% Ga films were prepared by the solution method. The roughness of films is below 1.08 nm, and possess exceptional transparency (>75%) and decent semiconductor properties. Based on this, the SnO2:Si/SnO2: Ga homojunctions with different Si doping concentrations were prepared. It is found that the conductivity of the SnO2:Si thin film gradually increases, and the rectification characteristics of the homojunction are optimized with increasing Si doping content. The SnO2:15 at.% Si/SnO2:10 at.% Ga homogeneous junction has the best performance, the turn-on voltage is as low as 5.6 V, and it also exhibits good unidirectional conductivity. The photoresponse of the SnO2:15 at.% Si/SnO2:10 at.% Ga homojunction under the lights of red, yellow, and purple was explored respectively. The result shows that the device responds strongly to purple light. Compared with the test results in the dark environment, the device current increases by two orders, which is expected to be applied in the field of near-ultraviolet detection.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3