Influence of KHCO3 Activation on Characteristics of Biomass-Derived Carbons for Supercapacitor

Author:

Yuan Yudan1,Sun Yi2,Liu Chenguang3ORCID,Yang Li4,Zhao Cezhou25ORCID

Affiliation:

1. Electronics and Communication Engineering Department, Suzhou Vocational Institute of Industrial Technology, Suzhou 215104, China

2. Department of Electrical and Electronic Engineering, School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

3. School of Robotics, Entrepreneur College, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

4. Department of Chemistry, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

5. School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Biomass materials with representative morphologies and compositions were employed to study the activation effect of KHCO3. As the activation time increased from 1 to 3 h, the products derived from puffed rice and pleurotus eryngii achieved a hierarchical porous structure, while the products derived from cotton still presented a microporous structure. In the electrochemical test of a three-electrode system, the specific capacitance of these products was 352, 319, and 216 F g−1, respectively. In the two-electrode system, the PR-2-based symmetric supercapacitor presented with a specific capacitance of 280.7 F g−1 at 0.5 A g−1, and the energy density of 14.03 Wh kg−1 at 150.04 W kg−1 and an energy density retention of 73.7% was at an even higher power density of 8380.4 W kg−1. After 10,000 cycles of charging and discharging at 5 A g−1, the specific capacitance retention of the supercapacitor reached 108.8%. Based on the experimental analysis, a likely mechanism for the formation of pores was proposed. The results indicate that biomass materials with soft layered or a network structure are the best candidates to obtain a hierarchical porous structure by KHCO3 activation.

Funder

Starting Research Fund from the Suzhou Vocational Institute of Industrial Technology

Suzhou Science and Technology Development Planning Programme

BAOSHENG (Suzhou) industrial cooperative fund

XJTLU Research Development Funding

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3