Modification of Cold-Sprayed Cu-Al-Ni-Al2O3 Composite Coatings by Friction Stir Technique to Enhance Wear Resistance Performance

Author:

Dzhurinskiy DmitryORCID,Babu Abhishek,Dautov StanislavORCID,Lama Anil,Mangrulkar MayuribalaORCID

Abstract

An innovative hybrid process combining two effective surface modification techniques, cold spray (CS) and friction stir processing (FSP), was proposed to refine the microstructure of Cu-Al-Ni-Al2O3 composite coating material. FSP was performed under constant rpm using extensive cooling conditions to remove heat generated during the operation. Microstructural characterizations such as optical micrography (OM), scanning electron microscopy (SEM), Electron Backscatter Diffraction (EBSD), Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) were performed to evaluate the microstructural evolution of the coatings before and after FSP treatment. Mechanical characterizations such as microhardness and elastic modulus were measured using micro-depth sensing techniques. Furthermore, sliding wear tests were performed to study the wear resistance of the as-sprayed and processed coatings. The findings suggest that after FSP, there is an improvement in microstructure of the coating layers with the elimination of particle boundaries, micro-pores and micro-cracks, and processed coatings showed an improvement in mechanical properties. Furthermore, there was a slight reduction in the wear rate of the deposited CuAlNi-Al2O3 composite coatings. Among all the test coatings, friction stir processed S1 coating showed the lowest wear rate, which was an almost two times lower wear rate than its unprocessed counterparts.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference79 articles.

1. Applied Tribology: Bearing Design and Lubrication;Khonsari,2017

2. Engineering Fundamentals of the Internal Combustion Engine;Pulkrabek,2000

3. Influence of translational vehicle dynamics on heavy vehicle noise emission

4. Materials for Plain Bearings

5. Automotive tribology overview of current advances and challenges for the future

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3