Copper-Based Composite Coatings by Solid-State Cold Spray Deposition: A Review

Author:

Wang Huipeng1,Li Peng12,Guo Weiling2,Ma Guozheng2,Wang Haidou23

Affiliation:

1. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. National Key Laboratory of Remanufacturing, Army Academy of Armored Force, Beijing 100072, China

3. National Engineering Research Center for Remanufacturing, Army Academy of Armored Force, Beijing 100072, China

Abstract

Copper (Cu)-based composite coatings have been widely applied in all kinds of important industry fields due to their outstanding comprehensive properties. The preparation temperature of a composite coating is the key factor affecting the properties, so the cold spray (CS) technology is characterized by low-temperature solid-state deposition, which ensures its emergence as the most promising technology for preparing the Cu-based composite coatings. In this paper, first, the principle of CS technology and the deposition mechanism of the coatings are introduced. On this basis, the deposition mechanism of Cu-based metal/ceramic composite coatings is further explored. Secondly, the effects of key CS process parameters (particle velocity, particle morphology, and substrate state) on the quality of the Cu-based composite coatings are summarized, and the current research status of cold-sprayed Cu-based composite coatings in the fields of corrosion resistance, wear resistance, self-lubricating properties, and electrical conductivity is reviewed. Moreover, the improvement of the performance of Cu-based composite coatings by various post-process treatments of coatings, such as heat treatment (HT) and friction stir processing (FSP), is elaborated. Finally, the future development of Cu-based composite coatings and CS technology is prospected.

Funder

National Natural Science Foundation of China

Key Project

14th Five-Year Plan Preliminary Research Project

2022 Jiangxi Postgraduate Innovation Special Fund Project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3