Theoretical and Experimental Investigate for the Magnetic and Optical Properties of Mn-ZnO Nanowire Microspheres

Author:

Zhang Lei,Wang Wei,Dai Rong,Ning Jing,Zhang Fuchun,Yan Junfeng

Abstract

A Mn-ZnO nanowire microsphere was prepared by using the hydrothermal method. The effects of Mn doping concentration and hydrothermal growth conditions on the crystal structures, morphologies, magnetic and optical properties of ZnO nanowire microsphere were studied. The characterization results showed Mn-ZnO nanowire microsphere with uniform and dense distributions along the [0001] direction with a hexagonal wurtzite structure. No impurity phases were detected in microsphere specimens. The room-temperature ferromagnetism of the Mn-ZnO nanowire microsphere was detected, with the saturation magnetization of 2.4 × 10−1 emu/g and a coercive field of 369 Oe. Furthermore, with the increase of Mn2+ ions doping concentration, the luminescence intensity of the sample decreases in both UV and visible regions, and slight blueshift in the visible light regions was observed. The theoretical results presented obvious spin polarization near the Fermi level, with strong Mn 3d and O 2p hybridization effects. The magnetic moments were mainly generated by Mn 3d and partial contribution of O 2p orbital electrons. Therefore, the Mn-ZnO nanowire microsphere can be used as a potential magneto-optical material.

Funder

National Natural Science Foundation of China

Natural Science of Foundation of ShannXi Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3