Experimental Investigation to Improve the Energy Efficiency of Solar PV Panels Using Hydrophobic SiO2 Nanomaterial

Author:

Alamri Hatem R.,Rezk HegazyORCID,Abd-Elbary Heba,Ziedan Hamdy A.ORCID,Elnozahy Ahmed

Abstract

This research aims to experimentally improve the overall efficiency of solar photovoltaic (PV) panels by coating them with hydrophobic SiO2 nanomaterial. Also, an accurate mathematical model was used to estimate the parameters of the PV panel, which is a non-linear optimization problem. Based on the experimental data and using the particle swarm optimization (PSO) algorithm, the optimal five parameters of a single diode model of a PV panel were determined in this study. This experimental work was conducted and carried out in the Renewable Energy Laboratory of Assiut University, Egypt. A comparative analysis was completed for three identical solar PV panels; the first panel was coated with hydrophobic SiO2 nanomaterial, so it was considered to be a self-cleaning panel; the second panel was uncoated and cleaned manually on a daily basis; and the third panel was kept dusty all the time through the experimental investigation, and was used as a reference. Experimentally, the output power of the PV panels was monitored for each panel in this study. Also, the anti-static and anti-reflection effects of coating solar PV panels with hydrophobic SiO2 nanomaterial were investigated experimentally. According to the obtained experimental results, it was found that the use of SiO2 coating for PV panels results in the better performance of the PV panels. The overall efficiency of the coated panel increased by 15% and 5%, compared to the dusty panel and the uncoated panel which was manually cleaned daily, respectively.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3