Author:
Rezk Hegazy,Alghassab Mohammed,Ziedan Hamdy A.
Abstract
NEOM City in Saudi Arabia is planned to be the first environmentally friendly city in the world that is powered by renewable energy sources minimizing CO2 emissions to reduce the effect of global warming according to Saudi Arabia’s Vision 2030. In recent years, Saudi Arabia has had a problem with water scarcity. The main factors affecting water security are unequal water distribution, wrong use of water resources and using bad or less efficient irrigation techniques. This paper is aimed to provide a detailed feasibility and techno-economic evaluation of using several scenarios of a stand-alone hybrid renewable energy system to satisfy the electrical energy needs for an environmentally friendly seawater desalination plant which feeds 150 m−3 day−1 of freshwater to 1000 people in NEOM City, Saudi Arabia. The first scenario is based on hybrid solar photovoltaic PV, fuel cells (FC) with a hydrogen storage system and batteries system (BS), while the second and third scenarios are based on hybrid PV/BS and PV/FC with a hydrogen storage system, respectively. HOMER® software was used to obtain the optimal configuration based on techno-economic analysis of each component of the hybrid renewable energy systems and an economic and environmental point of view based on the values of net present cost (NPC) and cost of energy (COE). Based on the obtained results, the best configuration is PV/FC/BS. The optimal size and related costs for the optimal size are 235 kW PV array, 30 kW FC, 144 batteries, 30 kW converter, 130 kW electrolyzer, and 25 kg hydrogen tank is considered the best option for powering a 150 m3 reverse osmosis (RO) desalination plant. The values of net present cost (NPC) and the cost of energy (COE) are $438,657 and $0.117/kWh, respectively. From the authors’ point view, the proposed system is one among the foremost environmentally friendly systems to provide electric energy to the seawater desalination plant, especially when connecting to the utility grid, because it is ready to reduce a large amount of greenhouse gas emissions due to using oil/nature gas in utility generation stations to reduce the effect of global warming.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献