Synthesis of High-Performance Photonic Crystal Film for SERS Applications via Drop-Coating Method

Author:

Wei Ming-Xue,Liu Chao-Hui,Lee Han,Lee Bo-Wei,Hsu Chun-Han,Lin Hong-PingORCID,Wu Yu-Chun

Abstract

Silica nanospheres with a well-controlled particle size were prepared via a nucleation-to-growth synthesis process. A facile method is proposed for improving the self-assembly behavior of silica colloidal particles in droplet coatings by the simple controlling of the drying temperature. It is shown that a periodically arranged, opal-structured, photonic crystal film with a large area of approximately 4.0 cm2 can be prepared, even when the particle size is up to 840 nm. When the band gap of the silica photonic crystals falls in the visible-light region, the crystals exhibit distinct structural colors. Moreover, the wavelength of the reflected light increases with an increasing particle size of silica. When the photonic band gap overlaps the wavelength of the laser source, the overall Raman spectrum intensity is significantly enhanced. Accordingly, the proposed nucleation-to-growth process and drop-coating method provides a cheap and simple approach for the manufacture of uniform sized silica and surface-enhanced Raman scattering substrates, respectively.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3