Abstract
In this study, atmospheric plasma spray was employed to deposit TiO2–SiAlON ceramic coating on 316 stainless steel. The phases and microstructure of the ceramic coating were investigated. Additionally, comparative studies on the tribological performances of the substrate and the ceramic coating, under both dry and starved lubrication conditions, were carried out. The SiAlON phase was preserved, while partial TiO2 anatase was transformed to rutile phase. The wear rate of the coating was roughly 1/3 of that of the substrate under both conditions. The wear mechanisms of the ceramic coating were surface fracture and abrasive wear in both cases, and the coating under starved lubrication underwent less abrasion. The pores in the coating served as micro-reservoirs, forming an oil layer on the mating surface, and improving tribological properties during sliding.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献